If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2d^2+13d+11=0
a = 2; b = 13; c = +11;
Δ = b2-4ac
Δ = 132-4·2·11
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-9}{2*2}=\frac{-22}{4} =-5+1/2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+9}{2*2}=\frac{-4}{4} =-1 $
| 5y-15=2 | | 5(11d+5)=-30 | | 5(x-3)+7(22-x)-4(2x+7)-3x+2=11-8(x-7)+4x-(6-5x)+8-2x | | 5^x=0.05 | | p2– -3= 6 | | 1/3+2/3g=2/3g-2/3 | | 7k2+10k+3=0 | | 3(x-3)-4=5 | | 6=(x-2)/4 | | 2*1/7p=-3 | | 1/4(x+8)=x+2 | | 41—2+p=−53—4 | | 2h2+5h+2=0 | | 9x+5+4x+50=180 | | -5(3x-9)=15x+45 | | 5x+9=x+29 | | p/2+4=2 | | 50=1/2h(2+3) | | k+-72=23 | | 4c-3=9(c+3) | | k+-11=-59 | | 1.2(w=5)=3 | | 3(p+2)-7p=18p= | | -16=x+6/3 | | 13+w/7=-7 | | u+51=-16 | | 5x^2-9=-49 | | 410=22/7*6²h | | 6x/10÷4/4-x=-21 | | 9/7=x/8 | | 5=1/5(4x+5) | | 2^(2x)-6*2^(x)+8=0 |